��I�xv%��B�������a �]���dH���u�xA(� *�bj��9d�1�Y����gW&�����ji�yE&��b@��:����1�/Z��rjF�� 特に保護ICが過放電検出すると放電電流を遮断するだけでなく保護IC自身もすべての電圧監視、電流監視機能を停止させ消費電流が0.1uA( 0.1uA以下 )のスタンバイ状態に移行することで電池電圧のそれ以上の低下を防いでいます。保護ICにはCMOSロジック回路で構成することによって電流を消費しない充電器接続検出回路が設けられており、充電器を接続することでスタンバイ状態から復帰し電圧監視、電流監視機能を再開することができます。過放電検出機能だけはスタンバイ状態に移行せず監視を継続させることで電池セル電圧が過放電から回復することを監視して、電圧監視、電流監視を再開する保護ICもあります。 充電時には正極で水酸化物イオンから水分子が発生します。水分子は負極で水素原子と水酸化物イオンに分解され、水素原子は水素吸蔵合金に吸蔵されます。化学反応式は下記の通りです(mは水素吸蔵合金を意味しています)。 9 0 obj 今回は携帯電話やスマートフォンなどの用途に使用される電池パックに搭載される電池セルが1個(1セル)の場合を例にして、過充電、過放電、過電流を検出すると充電電流や放電電流の経路を遮断するという保護ICの基本的な機能を説明し、また電池使用可能時間の拡大や充電時間の短縮には保護ICの高精度化が必要なことにも触れました。 endobj ¯ãŒã‚り、最近急にモーターの動きがおかしくなってきました。電圧を調べたら停止状態では8V程度あるのが作動させると6V位になって動かなくなりま... - バッテリー・充電器・電池 [解決済 - 2019/01/12] | 教えて!goo 2 0 obj その電圧が放電過電流検出電圧を超えると、VD3コンパレータが反転、DOUT出力がVDDレベルからVSSレベルに遷移しNch-MOS-FETがOFFし、放電電流を遮断します。, 充電電流をRSENSE抵抗で電圧に変換し、電圧コンパレータVD4で監視します。 <> 12 0 obj 3. リチウムイオン電池の安全性試験. 7 0 obj 47. 充電器によって充電中に電池セル電圧が過充電検出電圧を超えると、VD1コンパレータが反転、COUT出力がVDDレベルからV-レベルに遷移しNch-MOS-FETがOFFします。  endobj ティコミューターとして誕生したホンダe(イー)。35.5kWhの容量を持つリチウムイオンバッテリーやリヤモーター・リヤ駆動の専用プラットフォームなど、注目のメカニズムを紹介する。 TEXT 御堀直嗣(MIHORI Naotsugu) <>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 720 540] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> �V�V`I�n���l�Pz�r��i�IĔ���!����Fyi8��Ǝxc�N 9X���HGD�y�u�gn�J�� ��D���w��@�F� �wC�5/�$o�l�N��pOn��E�r^#�{��1C��K�g$8�%RS¼ퟛ'����*M�G��^6�,�s�;���z"� ��H};�b�&�5��͢\����gD��' ��Jîr�2�NW�d���Y���K0� スマホやパソコンなどに多用されているリチウムイオン充電池も、ニッケル水素充電池などと同じ様に使わないで放置して置くと、いつの間にか電圧が0Vになってしまいます。 逢沢 明 捨てたと思っていた iPad が出てきたので、充電しようと思ったら、できませんでした。 リチウムイオン電池には「過放電」という現象があります。 42. リチウムイオン電池の安全性と要素技術鳶島真一,科学情報出版株式会社,p38 1.リチウムイオン電池セルによる事故発生のイメージ 温度上昇のトリガー 内部短絡・外部短絡・過充電・加熱(電池セル以外からの発火による)・複合要因 継続的な可燃性ガスを そのほか、保護ICのVDD端子とV-端子は電池パックの端子に直接つながっていますので、ESD保護(静電気破壊対策)のためそれぞれの端子に抵抗R1、R2が挿入されています。これらの抵抗は充電器逆接続時の電流制限の役割も担っています。また保護ICのVDD端子とVSS端子間には保護ICの電源電圧安定化のためのコンデンサーC1 が取り付けられています。, 図1では電流検出にRSENSE抵抗を使用する例を示していますが、Nch-MOS-FETのON抵抗を電流検出と兼用する方法もあります。ON抵抗を利用する方法はRSENSE抵抗を使わないのでコスト的にはメリットがありますが、ON抵抗は電源電圧変動、温度変動、個体差ばらつきがあるため、高精度の過電流検出には不向きです。最近のスマートフォンのような大電流を扱いつつ、高精度な電流保護を求める用途にはRSENSEで電流検出を行なっています。, 図2に保護ICの内部回路を非常に単純化したイメージ図を示します。 endobj 44. 11 0 obj 3 0 obj 39. おわりに. <> スマートフォンは年々高機能、高性能化がすすみ、スマートフォンの消費する電力は増加の一途を辿っています。電池の使用時間が短くならないように搭載される電池も大容量化されています。一方、電池が大容量化すれば、充電にかかる時間も長くなりますが、にもかかわらず、逆にさらなる充電時間の短縮が求められています。, 保護ICの過充電検出電圧と図3で説明した充電制御における充電終止電圧との関係を示したのが図4です。充電終止電圧は保護ICの過充電設定電圧と重ならないように設定する必要があります。図4からわかるように過充電検出電圧が高精度な場合には充電制御における充電終止電圧を高く設定できますので、電池容量が増え、電池の使用可能時間が長くなります。, 充電時間短縮のための急速充電電流の増加によるRSENSE抵抗での発熱を抑えるためにRSENSE抵抗が増々小さくなり、RSENSE抵抗で電流電圧変換した過電流検出電圧も10mV程度になります。過充電検出の場合と同様に保護ICの過電流検出精度が高精度になれば充電制御での急速充電電流設定値を高く設定することができます。, 検出精度の高精度化の他に消費電流も保護ICにとっては重要な特性になります。保護ICの電源は電池セルなので、保護ICの消費電流を抑える必要があります。そのために保護ICの内部ではノイズ等による誤動作防止のための検出遅延や解除遅延時間を生成する発振回路やカウンターは検出/解除時のみ動作させるなどの工夫がなされています。 <> endobj セル 各セルを直列につないであるだけ Ex.鉛バッテリーの場合 鉛バッテリーの場合はbmsはない リチウムイオンバッテリーの構成. 「急増!リチウムイオン電池の事故」(くらし☆解説) 2017å¹´09月21日 (木) 水野 倫之 解説委員 2. 自動車の電動化ビジネスモデルと課題. endobj 次回はこのような1セル電池以外の保護ICについて説明したいと思います。, ★図研の回路モジュール無料ダウンロードサイト「Module Station」 使わないで充電出来なくなったリチウムイオン充電池を復活させる方法はあるのか. stream 38. ¯ãŒæ­è¼‰ã•ã‚Œã¦ã„るものが多い. 電池パック内の保護ICで保護されていますが、過充電や充電過電流が発生する恐れがある純正でない充電器の使用は避けなければなりません。, では、保護ICに必要とされる特性はどのようなものでしょうか。 endobj 皆さんこんにちは、リコー電子デバイスの講師Sです。前回までの2回にわたって電源監視ICというテーマで、マイコンの電源がマイコンの正常動作の動作範囲外になった場合にマイコンにリセットをかける電源監視ICや、マイコンからの定期信号を監視して信号が途切れた場合にマイコンのプログラム動作が異常と判断してマイコンをリセットするウォッチドッグタイマーICなどを取り上げて説明しました。 endstream šå½¢çŠ¶ã®é•ã„ では、この違いはどのようにして生じるのでしょうか。ここでは大きく分けて2つのメカニズムが関わっています。 リチウムイオン電池には内部インピーダンス(抵抗)があり、充電や … 42. 8 0 obj 4 0 obj <> 誰でもできる簡単な方法です . 図1に示すように2個のNch-MOS-FETを、それぞれのボディーダイオードが逆方向になるように配置して使用します。 リコー電子デバイス製品(DC/DCコンバータ)回路モジュールはこちら リコー電子デバイス製品(リニアレギュレータ)回路モジュールはこちら 電池電圧の過充電を検出するVD1、過放電を検出するVD2の監視回路は第10回電源監視ICで説明した回路と同様に電圧コンパレータ、基準電圧源、電池電圧を基準電圧源の電圧と比較するための分圧抵抗で構成されています。また放電電流の過電流を検出するVD3、充電電流の過電流を検出するVD4はRSENSEで電流を電圧変換した電圧と基準電圧を比較しています。VD1とVD4によってCOUT信号が生成され充電電流を導通/遮断するNch-MOS-FETにつながっています。VD2、VD3によってDOUT信号が生成され放電電流を導通/遮断するNch-MOS-FETにつながっています。 リチウムイオン電池を復活させる. 自動復帰タイプは電池電圧が過充電や過放電電圧から回復すると保護ICがNch-MOS-FETをOFFからONにして、充電あるいは放電が可能となるタイプになります。 逆に2個使うことで、例えば充電中に過充電を検出するとCOUT側のNch-MOS-FETがOFFして充電方向の電流が遮断されますが、ボディーダイオードを介して放電方向の電流を流すことは可能ですので過充電からの復帰に寄与することができます。 <> 2-2-5.過充電状態の負極の熱挙動 2-2-6.過充電反応のメカニズム 2-2-7.過充電耐性の向上 3.リチウムイオン電池の安全性試験 x��SMk1��?�Q�f3��cA��j�T����AD���^��;Y�v�H{!�佗7/�>C��N�T��| �P��R なお、前回第11回記事の「おわりに」で、第12回は電源監視ICの最終回としてリチウムイオン電池保護ICを取り上げると紹介しましたが、分量が多いため2回分の記事にするため表題のテーマ名に変更しています。, 本題に入る前にまずリチウムイオン電池について簡単に紹介し、そのあと、保護ICの必要性について説明したいと思います。 endobj 不 規則動詞 頻出, ベルヴィ ヒルズマーキュリー 料理, 夏目友人帳 グッズ しまむら, 澪つくし あらすじ ネタバレ最終回, コマンドー 放送 2020, 一人暮らし 食事 めんどくさい, パーカー 万年筆 デュオフォールド, ヤマハ 自転車 バッテリー分解, …" /> ��I�xv%��B�������a �]���dH���u�xA(� *�bj��9d�1�Y����gW&�����ji�yE&��b@��:����1�/Z��rjF�� 特に保護ICが過放電検出すると放電電流を遮断するだけでなく保護IC自身もすべての電圧監視、電流監視機能を停止させ消費電流が0.1uA( 0.1uA以下 )のスタンバイ状態に移行することで電池電圧のそれ以上の低下を防いでいます。保護ICにはCMOSロジック回路で構成することによって電流を消費しない充電器接続検出回路が設けられており、充電器を接続することでスタンバイ状態から復帰し電圧監視、電流監視機能を再開することができます。過放電検出機能だけはスタンバイ状態に移行せず監視を継続させることで電池セル電圧が過放電から回復することを監視して、電圧監視、電流監視を再開する保護ICもあります。 充電時には正極で水酸化物イオンから水分子が発生します。水分子は負極で水素原子と水酸化物イオンに分解され、水素原子は水素吸蔵合金に吸蔵されます。化学反応式は下記の通りです(mは水素吸蔵合金を意味しています)。 9 0 obj 今回は携帯電話やスマートフォンなどの用途に使用される電池パックに搭載される電池セルが1個(1セル)の場合を例にして、過充電、過放電、過電流を検出すると充電電流や放電電流の経路を遮断するという保護ICの基本的な機能を説明し、また電池使用可能時間の拡大や充電時間の短縮には保護ICの高精度化が必要なことにも触れました。 endobj ¯ãŒã‚り、最近急にモーターの動きがおかしくなってきました。電圧を調べたら停止状態では8V程度あるのが作動させると6V位になって動かなくなりま... - バッテリー・充電器・電池 [解決済 - 2019/01/12] | 教えて!goo 2 0 obj その電圧が放電過電流検出電圧を超えると、VD3コンパレータが反転、DOUT出力がVDDレベルからVSSレベルに遷移しNch-MOS-FETがOFFし、放電電流を遮断します。, 充電電流をRSENSE抵抗で電圧に変換し、電圧コンパレータVD4で監視します。 <> 12 0 obj 3. リチウムイオン電池の安全性試験. 7 0 obj 47. 充電器によって充電中に電池セル電圧が過充電検出電圧を超えると、VD1コンパレータが反転、COUT出力がVDDレベルからV-レベルに遷移しNch-MOS-FETがOFFします。  endobj ティコミューターとして誕生したホンダe(イー)。35.5kWhの容量を持つリチウムイオンバッテリーやリヤモーター・リヤ駆動の専用プラットフォームなど、注目のメカニズムを紹介する。 TEXT 御堀直嗣(MIHORI Naotsugu) <>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 720 540] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> �V�V`I�n���l�Pz�r��i�IĔ���!����Fyi8��Ǝxc�N 9X���HGD�y�u�gn�J�� ��D���w��@�F� �wC�5/�$o�l�N��pOn��E�r^#�{��1C��K�g$8�%RS¼ퟛ'����*M�G��^6�,�s�;���z"� ��H};�b�&�5��͢\����gD��' ��Jîr�2�NW�d���Y���K0� スマホやパソコンなどに多用されているリチウムイオン充電池も、ニッケル水素充電池などと同じ様に使わないで放置して置くと、いつの間にか電圧が0Vになってしまいます。 逢沢 明 捨てたと思っていた iPad が出てきたので、充電しようと思ったら、できませんでした。 リチウムイオン電池には「過放電」という現象があります。 42. リチウムイオン電池の安全性と要素技術鳶島真一,科学情報出版株式会社,p38 1.リチウムイオン電池セルによる事故発生のイメージ 温度上昇のトリガー 内部短絡・外部短絡・過充電・加熱(電池セル以外からの発火による)・複合要因 継続的な可燃性ガスを そのほか、保護ICのVDD端子とV-端子は電池パックの端子に直接つながっていますので、ESD保護(静電気破壊対策)のためそれぞれの端子に抵抗R1、R2が挿入されています。これらの抵抗は充電器逆接続時の電流制限の役割も担っています。また保護ICのVDD端子とVSS端子間には保護ICの電源電圧安定化のためのコンデンサーC1 が取り付けられています。, 図1では電流検出にRSENSE抵抗を使用する例を示していますが、Nch-MOS-FETのON抵抗を電流検出と兼用する方法もあります。ON抵抗を利用する方法はRSENSE抵抗を使わないのでコスト的にはメリットがありますが、ON抵抗は電源電圧変動、温度変動、個体差ばらつきがあるため、高精度の過電流検出には不向きです。最近のスマートフォンのような大電流を扱いつつ、高精度な電流保護を求める用途にはRSENSEで電流検出を行なっています。, 図2に保護ICの内部回路を非常に単純化したイメージ図を示します。 endobj 44. 11 0 obj 3 0 obj 39. おわりに. <> スマートフォンは年々高機能、高性能化がすすみ、スマートフォンの消費する電力は増加の一途を辿っています。電池の使用時間が短くならないように搭載される電池も大容量化されています。一方、電池が大容量化すれば、充電にかかる時間も長くなりますが、にもかかわらず、逆にさらなる充電時間の短縮が求められています。, 保護ICの過充電検出電圧と図3で説明した充電制御における充電終止電圧との関係を示したのが図4です。充電終止電圧は保護ICの過充電設定電圧と重ならないように設定する必要があります。図4からわかるように過充電検出電圧が高精度な場合には充電制御における充電終止電圧を高く設定できますので、電池容量が増え、電池の使用可能時間が長くなります。, 充電時間短縮のための急速充電電流の増加によるRSENSE抵抗での発熱を抑えるためにRSENSE抵抗が増々小さくなり、RSENSE抵抗で電流電圧変換した過電流検出電圧も10mV程度になります。過充電検出の場合と同様に保護ICの過電流検出精度が高精度になれば充電制御での急速充電電流設定値を高く設定することができます。, 検出精度の高精度化の他に消費電流も保護ICにとっては重要な特性になります。保護ICの電源は電池セルなので、保護ICの消費電流を抑える必要があります。そのために保護ICの内部ではノイズ等による誤動作防止のための検出遅延や解除遅延時間を生成する発振回路やカウンターは検出/解除時のみ動作させるなどの工夫がなされています。 <> endobj セル 各セルを直列につないであるだけ Ex.鉛バッテリーの場合 鉛バッテリーの場合はbmsはない リチウムイオンバッテリーの構成. 「急増!リチウムイオン電池の事故」(くらし☆解説) 2017å¹´09月21日 (木) 水野 倫之 解説委員 2. 自動車の電動化ビジネスモデルと課題. endobj 次回はこのような1セル電池以外の保護ICについて説明したいと思います。, ★図研の回路モジュール無料ダウンロードサイト「Module Station」 使わないで充電出来なくなったリチウムイオン充電池を復活させる方法はあるのか. stream 38. ¯ãŒæ­è¼‰ã•ã‚Œã¦ã„るものが多い. 電池パック内の保護ICで保護されていますが、過充電や充電過電流が発生する恐れがある純正でない充電器の使用は避けなければなりません。, では、保護ICに必要とされる特性はどのようなものでしょうか。 endobj 皆さんこんにちは、リコー電子デバイスの講師Sです。前回までの2回にわたって電源監視ICというテーマで、マイコンの電源がマイコンの正常動作の動作範囲外になった場合にマイコンにリセットをかける電源監視ICや、マイコンからの定期信号を監視して信号が途切れた場合にマイコンのプログラム動作が異常と判断してマイコンをリセットするウォッチドッグタイマーICなどを取り上げて説明しました。 endstream šå½¢çŠ¶ã®é•ã„ では、この違いはどのようにして生じるのでしょうか。ここでは大きく分けて2つのメカニズムが関わっています。 リチウムイオン電池には内部インピーダンス(抵抗)があり、充電や … 42. 8 0 obj 4 0 obj <> 誰でもできる簡単な方法です . 図1に示すように2個のNch-MOS-FETを、それぞれのボディーダイオードが逆方向になるように配置して使用します。 リコー電子デバイス製品(DC/DCコンバータ)回路モジュールはこちら リコー電子デバイス製品(リニアレギュレータ)回路モジュールはこちら 電池電圧の過充電を検出するVD1、過放電を検出するVD2の監視回路は第10回電源監視ICで説明した回路と同様に電圧コンパレータ、基準電圧源、電池電圧を基準電圧源の電圧と比較するための分圧抵抗で構成されています。また放電電流の過電流を検出するVD3、充電電流の過電流を検出するVD4はRSENSEで電流を電圧変換した電圧と基準電圧を比較しています。VD1とVD4によってCOUT信号が生成され充電電流を導通/遮断するNch-MOS-FETにつながっています。VD2、VD3によってDOUT信号が生成され放電電流を導通/遮断するNch-MOS-FETにつながっています。 リチウムイオン電池を復活させる. 自動復帰タイプは電池電圧が過充電や過放電電圧から回復すると保護ICがNch-MOS-FETをOFFからONにして、充電あるいは放電が可能となるタイプになります。 逆に2個使うことで、例えば充電中に過充電を検出するとCOUT側のNch-MOS-FETがOFFして充電方向の電流が遮断されますが、ボディーダイオードを介して放電方向の電流を流すことは可能ですので過充電からの復帰に寄与することができます。 <> 2-2-5.過充電状態の負極の熱挙動 2-2-6.過充電反応のメカニズム 2-2-7.過充電耐性の向上 3.リチウムイオン電池の安全性試験 x��SMk1��?�Q�f3��cA��j�T����AD���^��;Y�v�H{!�佗7/�>C��N�T��| �P��R なお、前回第11回記事の「おわりに」で、第12回は電源監視ICの最終回としてリチウムイオン電池保護ICを取り上げると紹介しましたが、分量が多いため2回分の記事にするため表題のテーマ名に変更しています。, 本題に入る前にまずリチウムイオン電池について簡単に紹介し、そのあと、保護ICの必要性について説明したいと思います。 endobj 不 規則動詞 頻出, ベルヴィ ヒルズマーキュリー 料理, 夏目友人帳 グッズ しまむら, 澪つくし あらすじ ネタバレ最終回, コマンドー 放送 2020, 一人暮らし 食事 めんどくさい, パーカー 万年筆 デュオフォールド, ヤマハ 自転車 バッテリー分解, " /> ��I�xv%��B�������a �]���dH���u�xA(� *�bj��9d�1�Y����gW&�����ji�yE&��b@��:����1�/Z��rjF�� 特に保護ICが過放電検出すると放電電流を遮断するだけでなく保護IC自身もすべての電圧監視、電流監視機能を停止させ消費電流が0.1uA( 0.1uA以下 )のスタンバイ状態に移行することで電池電圧のそれ以上の低下を防いでいます。保護ICにはCMOSロジック回路で構成することによって電流を消費しない充電器接続検出回路が設けられており、充電器を接続することでスタンバイ状態から復帰し電圧監視、電流監視機能を再開することができます。過放電検出機能だけはスタンバイ状態に移行せず監視を継続させることで電池セル電圧が過放電から回復することを監視して、電圧監視、電流監視を再開する保護ICもあります。 充電時には正極で水酸化物イオンから水分子が発生します。水分子は負極で水素原子と水酸化物イオンに分解され、水素原子は水素吸蔵合金に吸蔵されます。化学反応式は下記の通りです(mは水素吸蔵合金を意味しています)。 9 0 obj 今回は携帯電話やスマートフォンなどの用途に使用される電池パックに搭載される電池セルが1個(1セル)の場合を例にして、過充電、過放電、過電流を検出すると充電電流や放電電流の経路を遮断するという保護ICの基本的な機能を説明し、また電池使用可能時間の拡大や充電時間の短縮には保護ICの高精度化が必要なことにも触れました。 endobj ¯ãŒã‚り、最近急にモーターの動きがおかしくなってきました。電圧を調べたら停止状態では8V程度あるのが作動させると6V位になって動かなくなりま... - バッテリー・充電器・電池 [解決済 - 2019/01/12] | 教えて!goo 2 0 obj その電圧が放電過電流検出電圧を超えると、VD3コンパレータが反転、DOUT出力がVDDレベルからVSSレベルに遷移しNch-MOS-FETがOFFし、放電電流を遮断します。, 充電電流をRSENSE抵抗で電圧に変換し、電圧コンパレータVD4で監視します。 <> 12 0 obj 3. リチウムイオン電池の安全性試験. 7 0 obj 47. 充電器によって充電中に電池セル電圧が過充電検出電圧を超えると、VD1コンパレータが反転、COUT出力がVDDレベルからV-レベルに遷移しNch-MOS-FETがOFFします。  endobj ティコミューターとして誕生したホンダe(イー)。35.5kWhの容量を持つリチウムイオンバッテリーやリヤモーター・リヤ駆動の専用プラットフォームなど、注目のメカニズムを紹介する。 TEXT 御堀直嗣(MIHORI Naotsugu) <>/XObject<>/ProcSet[/PDF/Text/ImageB/ImageC/ImageI] >>/MediaBox[ 0 0 720 540] /Contents 4 0 R/Group<>/Tabs/S/StructParents 0>> �V�V`I�n���l�Pz�r��i�IĔ���!����Fyi8��Ǝxc�N 9X���HGD�y�u�gn�J�� ��D���w��@�F� �wC�5/�$o�l�N��pOn��E�r^#�{��1C��K�g$8�%RS¼ퟛ'����*M�G��^6�,�s�;���z"� ��H};�b�&�5��͢\����gD��' ��Jîr�2�NW�d���Y���K0� スマホやパソコンなどに多用されているリチウムイオン充電池も、ニッケル水素充電池などと同じ様に使わないで放置して置くと、いつの間にか電圧が0Vになってしまいます。 逢沢 明 捨てたと思っていた iPad が出てきたので、充電しようと思ったら、できませんでした。 リチウムイオン電池には「過放電」という現象があります。 42. リチウムイオン電池の安全性と要素技術鳶島真一,科学情報出版株式会社,p38 1.リチウムイオン電池セルによる事故発生のイメージ 温度上昇のトリガー 内部短絡・外部短絡・過充電・加熱(電池セル以外からの発火による)・複合要因 継続的な可燃性ガスを そのほか、保護ICのVDD端子とV-端子は電池パックの端子に直接つながっていますので、ESD保護(静電気破壊対策)のためそれぞれの端子に抵抗R1、R2が挿入されています。これらの抵抗は充電器逆接続時の電流制限の役割も担っています。また保護ICのVDD端子とVSS端子間には保護ICの電源電圧安定化のためのコンデンサーC1 が取り付けられています。, 図1では電流検出にRSENSE抵抗を使用する例を示していますが、Nch-MOS-FETのON抵抗を電流検出と兼用する方法もあります。ON抵抗を利用する方法はRSENSE抵抗を使わないのでコスト的にはメリットがありますが、ON抵抗は電源電圧変動、温度変動、個体差ばらつきがあるため、高精度の過電流検出には不向きです。最近のスマートフォンのような大電流を扱いつつ、高精度な電流保護を求める用途にはRSENSEで電流検出を行なっています。, 図2に保護ICの内部回路を非常に単純化したイメージ図を示します。 endobj 44. 11 0 obj 3 0 obj 39. おわりに. <> スマートフォンは年々高機能、高性能化がすすみ、スマートフォンの消費する電力は増加の一途を辿っています。電池の使用時間が短くならないように搭載される電池も大容量化されています。一方、電池が大容量化すれば、充電にかかる時間も長くなりますが、にもかかわらず、逆にさらなる充電時間の短縮が求められています。, 保護ICの過充電検出電圧と図3で説明した充電制御における充電終止電圧との関係を示したのが図4です。充電終止電圧は保護ICの過充電設定電圧と重ならないように設定する必要があります。図4からわかるように過充電検出電圧が高精度な場合には充電制御における充電終止電圧を高く設定できますので、電池容量が増え、電池の使用可能時間が長くなります。, 充電時間短縮のための急速充電電流の増加によるRSENSE抵抗での発熱を抑えるためにRSENSE抵抗が増々小さくなり、RSENSE抵抗で電流電圧変換した過電流検出電圧も10mV程度になります。過充電検出の場合と同様に保護ICの過電流検出精度が高精度になれば充電制御での急速充電電流設定値を高く設定することができます。, 検出精度の高精度化の他に消費電流も保護ICにとっては重要な特性になります。保護ICの電源は電池セルなので、保護ICの消費電流を抑える必要があります。そのために保護ICの内部ではノイズ等による誤動作防止のための検出遅延や解除遅延時間を生成する発振回路やカウンターは検出/解除時のみ動作させるなどの工夫がなされています。 <> endobj セル 各セルを直列につないであるだけ Ex.鉛バッテリーの場合 鉛バッテリーの場合はbmsはない リチウムイオンバッテリーの構成. 「急増!リチウムイオン電池の事故」(くらし☆解説) 2017å¹´09月21日 (木) 水野 倫之 解説委員 2. 自動車の電動化ビジネスモデルと課題. endobj 次回はこのような1セル電池以外の保護ICについて説明したいと思います。, ★図研の回路モジュール無料ダウンロードサイト「Module Station」 使わないで充電出来なくなったリチウムイオン充電池を復活させる方法はあるのか. stream 38. ¯ãŒæ­è¼‰ã•ã‚Œã¦ã„るものが多い. 電池パック内の保護ICで保護されていますが、過充電や充電過電流が発生する恐れがある純正でない充電器の使用は避けなければなりません。, では、保護ICに必要とされる特性はどのようなものでしょうか。 endobj 皆さんこんにちは、リコー電子デバイスの講師Sです。前回までの2回にわたって電源監視ICというテーマで、マイコンの電源がマイコンの正常動作の動作範囲外になった場合にマイコンにリセットをかける電源監視ICや、マイコンからの定期信号を監視して信号が途切れた場合にマイコンのプログラム動作が異常と判断してマイコンをリセットするウォッチドッグタイマーICなどを取り上げて説明しました。 endstream šå½¢çŠ¶ã®é•ã„ では、この違いはどのようにして生じるのでしょうか。ここでは大きく分けて2つのメカニズムが関わっています。 リチウムイオン電池には内部インピーダンス(抵抗)があり、充電や … 42. 8 0 obj 4 0 obj <> 誰でもできる簡単な方法です . 図1に示すように2個のNch-MOS-FETを、それぞれのボディーダイオードが逆方向になるように配置して使用します。 リコー電子デバイス製品(DC/DCコンバータ)回路モジュールはこちら リコー電子デバイス製品(リニアレギュレータ)回路モジュールはこちら 電池電圧の過充電を検出するVD1、過放電を検出するVD2の監視回路は第10回電源監視ICで説明した回路と同様に電圧コンパレータ、基準電圧源、電池電圧を基準電圧源の電圧と比較するための分圧抵抗で構成されています。また放電電流の過電流を検出するVD3、充電電流の過電流を検出するVD4はRSENSEで電流を電圧変換した電圧と基準電圧を比較しています。VD1とVD4によってCOUT信号が生成され充電電流を導通/遮断するNch-MOS-FETにつながっています。VD2、VD3によってDOUT信号が生成され放電電流を導通/遮断するNch-MOS-FETにつながっています。 リチウムイオン電池を復活させる. 自動復帰タイプは電池電圧が過充電や過放電電圧から回復すると保護ICがNch-MOS-FETをOFFからONにして、充電あるいは放電が可能となるタイプになります。 逆に2個使うことで、例えば充電中に過充電を検出するとCOUT側のNch-MOS-FETがOFFして充電方向の電流が遮断されますが、ボディーダイオードを介して放電方向の電流を流すことは可能ですので過充電からの復帰に寄与することができます。 <> 2-2-5.過充電状態の負極の熱挙動 2-2-6.過充電反応のメカニズム 2-2-7.過充電耐性の向上 3.リチウムイオン電池の安全性試験 x��SMk1��?�Q�f3��cA��j�T����AD���^��;Y�v�H{!�佗7/�>C��N�T��| �P��R なお、前回第11回記事の「おわりに」で、第12回は電源監視ICの最終回としてリチウムイオン電池保護ICを取り上げると紹介しましたが、分量が多いため2回分の記事にするため表題のテーマ名に変更しています。, 本題に入る前にまずリチウムイオン電池について簡単に紹介し、そのあと、保護ICの必要性について説明したいと思います。 endobj 不 規則動詞 頻出, ベルヴィ ヒルズマーキュリー 料理, 夏目友人帳 グッズ しまむら, 澪つくし あらすじ ネタバレ最終回, コマンドー 放送 2020, 一人暮らし 食事 めんどくさい, パーカー 万年筆 デュオフォールド, ヤマハ 自転車 バッテリー分解, " />